Transplanted olfactory ensheathing cells remyelinate and enhance axonal conduction in the demyelinated dorsal columns of the rat spinal cord.
نویسندگان
چکیده
Olfactory ensheathing cells (OECs), which have properties of both astrocytes and Schwann cells, can remyelinate axons with a Schwann cell-like pattern of myelin. In this study the pattern and extent of remyelination and the electrophysiological properties of dorsal column axons were characterized after transplantation of OECs into a demyelinated rat spinal cord lesion. Dorsal columns of adult rat spinal cords were demyelinated by x-ray irradiation and focal injections of ethidium bromide. Cell suspensions of acutely dissociated OECs from neonatal rats were injected into the lesion 6 d after x-ray irradiation. At 21-25 d after transplantation of OECs, the spinal cords were maintained in an in vitro recording chamber to study the conduction properties of the axons. The remyelinated axons displayed improved conduction velocity and frequency-response properties, and action potentials were conducted a greater distance into the lesion, suggesting that conduction block was overcome. Quantitative histological analysis revealed remyelinated axons near and remote from the cell injection site, indicating extensive migration of OECs within the lesion. These data support the conclusion that transplantation of neonatal OECs results in quantitatively extensive and functional remyelination of demyelinated dorsal column axons.
منابع مشابه
Repair of Spinal Cord Injury by Co-Transplantation of embryonic Stem Cell-Derived Motor Neuron and Olfactory Ensheathing Cell
Background: The failure of regeneration after spinal cord injury (SCI) has been attributed to axonal demyelination and neuronal death. Cellular replacement and white matter regeneration are both necessary for SCI repair. In this study, we evaluated the co-transplantation of olfactory ensheathing cells (OEC) and embryonic stem (ES) cell-derived motor neurons (ESMN) on contused SCI. Methods: OEC...
متن کاملTransplantation of cryopreserved adult human Schwann cells enhances axonal conduction in demyelinated spinal cord.
Schwann cells derived from human sural nerve may provide a valuable source of tissue for a cell-based therapy in multiple sclerosis. However, it is essential to show that transplanted human Schwann cells can remyelinate axons in adult CNS and improve axonal conduction. Sections of sural nerve were removed from amputated legs of patients with vascular disease or diabetes, and Schwann cells were ...
متن کاملMinocycline Enhance Restorative Ability of Olfactory Ensheathing Cells by Upregulation of BDNF and GDNF Expression After Spinal Cord Injury
Purpose: Spinal cord injury is a global public health issue that results in extensive neuronal degeneration, axonal and myelin loss and severe functional deficits. Neurotrophic factors are potential treatment for reducing secondary damage, promoting axon growth, and are responsible for inducing myelination after injury. Olfactory ensheathing cells (OECs) and minocycline have been shown to promo...
متن کاملIdentification of a human olfactory ensheathing cell that can effect transplant-mediated remyelination of demyelinated CNS axons.
The olfactory ensheathing cell (OEC) has attracted much interest recently because of its potential for transplantation-based therapy of CNS disease. Rat OECs are able to remyelinate demyelinated axons and support regeneration of damaged axons. Although OECs can be grown readily from the rat, a macrosmatic species, it has been uncertain whether it would be similarly straightforward to obtain the...
متن کاملPeripheral Nerve Regeneration: A Current Perspective
OBJECTIVE Nerve regenerative is a complex problem and cell therapy strategies are being developed to enhance axonal regeneration. One approach is to transplant peripheral myelin-forming cells (Schwann cells or olfactory ensheathing cells) that can secrete neurotrophic factors and participate in remyelination of regenerated axons. The objectives of this report are to first review the basic regen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 18 16 شماره
صفحات -
تاریخ انتشار 1998